Constructs a learner for the divide and conquer version of KRR.
Details
This function is to be used with the CVST package as a drop in
replacement for constructKRRLearner
. The
implementation approximates the inversion of the kernel Matrix
using the divide an conquer scheme, lowering computational and
memory complexity from \(O(n^3)\) and \(O(n^2)\) to
\(O(n^3/m^2)\) and \(O(n^2/m^2)\) respectively, where m are the
number of blocks to be used (parameter nblocks). Theoretically safe
values for \(m\) are \(< n^{1/3}\), but practically \(m\) may
be a little bit larger. The function will issue a warning, if the
value for \(m\) is too large.
References
Zhang, Y., Duchi, J.C., Wainwright, M.J., 2013. Divide and Conquer Kernel Ridge Regression: A Distributed Algorithm with Minimax Optimal Rates. arXiv:1305.5029 [cs, math, stat].
Examples
ns <- noisySinc(1000)
nsTest <- noisySinc(1000)
fast.krr <- constructFastKRRLearner()
fast.p <- list(kernel="rbfdot", sigma=100, lambda=.1/getN(ns), nblocks = 4)
system.time(fast.m <- fast.krr$learn(ns, fast.p))
#> user system elapsed
#> 0.085 0.044 0.066
fast.pred <- fast.krr$predict(fast.m, nsTest)
sum((fast.pred - nsTest$y)^2) / getN(nsTest)
#> [1] 0.0168624
if (FALSE) {
krr <- CVST::constructKRRLearner()
p <- list(kernel="rbfdot", sigma=100, lambda=.1/getN(ns))
system.time(m <- krr$learn(ns, p))
pred <- krr$predict(m, nsTest)
sum((pred - nsTest$y)^2) / getN(nsTest)
plot(ns, col = '#00000030', pch = 19)
lines(sort(nsTest$x), fast.pred[order(nsTest$x)], col = '#00C000', lty = 2)
lines(sort(nsTest$x), pred[order(nsTest$x)], col = '#0000C0', lty = 2)
legend('topleft', legend = c('fast KRR', 'KRR'),
col = c('#00C000', '#0000C0'), lty = 2)
}